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1. INTRODUCTION

Considerable interest in studying off-center impu-
rity atoms is related to the fact that the presence of these
atoms in crystals can induce ferroelectric phase transi-
tions (PTs) [1]. To explain the properties of such PTs at
the microscopic level, it is necessary to know the shape
of the potential wells of off-center impurity atoms.

In a microscopic one-dimensional ferroelectricity
model, the Hamiltonian has the well-known form [2]

(1)
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and momentum of an atom, respectively; 
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strength of an external electric field; and 
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parameters. Equation (1) can be written as a sum of
independent equations describing the motion of one
atom in an effective potential:
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Potential (2) consists of the following two terms: the
local anharmonic potential ((
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 and
the term describing the interaction of the atom under
consideration with the other atoms and the external
field. If quantum effects are neglected, the necessary
condition for a PT to occur in the crystal is 

 

A <

 

 0 in the
microscopic model [2]. In this case, the local potential
has two equivalent minima (in the three-dimensional
case, up to eight minima, depending on the symmetry
of the site occupied by the atom). Using Eq. (1), the dis-
placement and order–disorder PTs can be described in
the framework of a unified approach.

Within the microscopic model, the character of a PT
(order–disorder or displacement transition) in a simple
cubic lattice is determined by the ratio between the fol-
lowing two characteristic energies [2]: the well depth
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which is equal to the energy required for the atom to
move from the bottom of the well to the potential-well
maximum (at 

 

x

 

 = 0) under the condition that all the
other atoms remain in the ordered state. The dimension-
less parameter 
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 determines the properties and
dynamics of the PT; namely, the PT is of the order–dis-
order type for 
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 1. In the microscopic model, the PT temperature is
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.
Thus, we need to know the potential-well depth in order
to determine the type of the PT.
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In real ferroelectrics, PTs can rarely be assigned to
the displacement or order–disorder type; more fre-
quently, PTs in them are of the intermediate type. The
problem of determining the type of a PT can be solved
using its properties, such as the Curie constant, the
existence of a soft mode, and the behavior of the heat
capacity near Tc. However, it is often difficult to inter-
pret the measurement results, because the soft mode
decays, the behavior of the heat capacity is distorted in
the presence of defects, and it is difficult to conduct
dielectric measurements in samples with high conduc-
tivity. A direct determination of the parameters of
microscopic Hamiltonian (1) would be a solution of
this problem. This is of fundamental importance for
understanding of the nature of PTs in crystals and for
the prediction of the PT properties.

The GeTe–SnTe system is an example of a system
for which studies yield contradictory information on
the PT type. The components of this system form a con-
tinuous series of solid solutions with a NaCl-type struc-
ture in the high-temperature phase. In a Sn1 – xGexTe
solid solution, the temperature of the PT to the rhombo-
hedral ferroelectric phase increases from ~100 to 700 K
with increasing x [4]. Precision x-ray studies of lattice
distortions below Tc [5] have shown that the order of the
PT in these crystals changes with increasing x; namely,
the transition is of the second order for x < 0.28 and of
the first order for x > 0.28. The behavior of the heat
capacity [6] and elastic moduli [7] near the Curie point
demonstrate that the PTs are of the displacive type (in
GeTe, in addition, a soft mode was observed [8]). How-
ever, extended x-ray-absorption fine-structure
(EXAFS) studies [9] have shown that Ge atoms are dis-
placed from lattice sites both below and above Tc,
which indicates that these atoms are in a multiwell
potential and that the PT is of the order–disorder type.
These contradictory data and the simplicity of the crys-
tal structure (with two atoms in the primitive cell)
prompted us to use EXAFS spectroscopy to study the
shape of the potential well of Ge atoms in Sn1 – xGexTe.
The proposed method can also be useful for studying
more complicated ferroelectrics.

2. DESCRIPTION OF THE METHOD

EXAFS spectroscopy is a powerful method for
studying the local structure of crystals. It has been used
to answer the question of whether the potential in some
ferroelectrics are of the single-well or multiwell type
[10–15]. The solution of this problem is reduced to
studying the atomic motion in a strongly anharmonic
crystal.

To date, the parameters of single-well potential
anharmonicity have been determined from the EXAFS
data using the cumulant expansion method [16]. How-
ever, this method can be applied if the anharmonicity is
not very strong and, hence, one can restrict oneself to
only several first terms of an expansion in powers of k.

In addition, this method is inapplicable to crystals
whose potential has several minima and it does not
yield information on the atomic-motion anisotropy.
Because the potential of an off-center impurity atom
has several energetically equivalent minima, another
approach is required to solve our problem.

In this paper, we propose a new method for solving
the problem of determining the multiwell-potential
parameters for off-center impurities. This method is
free from the drawbacks inherent in the cumulant
expansion method. The basic special features of this
approach are the following: (i) In calculating the theo-
retical EXAFS function, exact three-dimensional inte-
gration is performed, which makes it possible to con-
sider potentials with an arbitrary degree of anharmonic-
ity. (ii) A cluster is chosen with an atomic arrangement
coinciding with that in the first coordination shell of an
absorbing atom, which allows one to consider multi-
well potentials and determine the parameters of the
atomic-motion anisotropy.

In the single-scattering approximation of EXAFS
theory, the oscillating part of the spectrum at the
K-absorption edge (the EXAFS function) can be writ-
ten as follows [17]:

(3)

where summation is over all nearest neighbors;  is
the factor taking into account many-electron effects and
inelastic scattering; f is the backscattering complex
function; δ1 is the phase of the photoelectron escaping
from the absorbing atom; λ is the photoelectron mean
free path; k is the photoelectron wave vector, which is
related to the absorbed photon energy E and the photo-
ionization energy E0 by the formula k =

/�; ρ(r) is the probability that the scatter-
ing atom is at the point r (the position of the absorbing
atom is taken to be the origin of the reference system);
and r = |r | is the distance between the absorbing and

scattering atoms. The quantities , f, δ1, and λ charac-
terize the absorbing and scattering atoms. The distribu-
tion function ρ(r) contains information on the local
structure and motion of atoms.

Since the function ρ(r) is determined by V(r), the
potential-well parameters can be found from the
EXAFS spectra. In our approach, the EXAFS spectra
are processed as follows. We first parametrize the three-
dimensional potential V(r), taking the crystal symmetry
into account. Then, we calculate the normalized distri-
bution function ρ(r) and substitute it into Eq. (3) in
order to calculate the theoretical EXAFS spectrum and
compare it with an experimental one. Varying the
potential parameters and repeating the procedure for
calculating the theoretical spectrum, we next minimize
the root-mean-square (rms) deviation of the theoretical
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EXAFS spectrum from the experimental one and thus
determine the shape of the potential well.

Above the PT temperature, our crystals have a
NaCl-type structure shown in Fig. 1. In this structure,
each off-center Ge atom moves in the octahedron
formed by six Te atoms. In ferroelectrics, the displace-
ment of ferroelectrically active atoms from lattice sites
due to thermal motion is always greater than that of sur-
rounding atoms. Therefore, the thermal motion of Te
atoms can be neglected and only the motion of the Ge
atom in the rigid octahedron can be considered in a first
approximation. In our experiments, the Ge atoms
absorb x-ray radiation and the scattering atoms are Te
atoms. Since we are interested in the motion of Ge
atoms, it is appropriate to single out a cluster consisting
of seven atoms (Ge + 6Te) and pass to a new reference
system whose origin is located at the octahedron sym-
metry center. Taking into account that ρ(r) is the pair
distribution function, we can rewrite Eq. (3) in the new
reference system and show that the expression for χ(k)
remains the same except for the fact that the vector r is
now the coordinate of the Ge atom and ρ(r) is the prob-
ability that the Ge atom is at the point r. In the new ref-
erence system, Te atoms are located at the distance a0/2
from the origin of coordinates along the 〈100〉 axes (a0
is the lattice parameter). Therefore, for the Ge atom
located at the point r = (x, y, z), the contribution of the
six Te atoms to EXAFS function (3) can be expressed
in terms of six three-dimensional integrals in which the

distances rj are calculated from the formulas  =

(a0/2 ± x)2 + y2 + z2,  = x2 + (a0/2 ± y)2 + z2, and

 = x2 + y2 + (a0/2 ± z)2.

As was mentioned above, the potential V(r) consists
of two parts, namely, the local anharmonic potential
Vloc(r) and the term Vmf = (d · Emf), which describes the
interaction of the atom with the other atoms and the
external field. We expand the potential Vloc(r) in powers
of the atomic displacement components in the neigh-

r1 2,
2

r3 4,
2

r5 6,
2

borhood of the origin of coordinates. For a site charac-
terized by the point symmetry group Oh, the expansion
in a power series up to fourth-order terms has the form

(4)

where α, β, γ, and δ are coefficients. Because the distri-
bution function is independent of the choice of the zero
of energy, we set α = 0. Then, Eq. (4) can be rewritten
as

(5)

where a = γ + δ/3 > 0 is the parameter characterizing the

isotropic part of the fourth-order anharmonicity,  =
–β/(2γ + 2δ/3) is the square of the distance to the poten-
tial minimum, and d = δ is the parameter describing the
anisotropic part of the fourth-order anharmonicity. As
mentioned above, the Ge atoms are displaced in a 〈111〉
direction (one of the eight equivalent minima) in the
low-symmetry phase of Sn1 – xGexTe; therefore, we

have d < 0. The quantities a, , and d are the param-
eters of the local anharmonic potential in Eq. (2), which
is generalized to the three-dimensional case.

The experimental data discussed in this paper are
obtained for samples in the ferroelectric phase. There-
fore, it is necessary to take into account the existence of
a preferential direction (the term Vmf and a rhombohe-
dral distortion of the lattice in the processing of the
data. We now estimate the effect of these factors and the
higher order invariants on the obtained results. The
inclusion of the rhombohedral lattice distortion (known
from experiment) in the data processing did not have a
significant effect on the agreement between the experi-
mental and theoretical spectra and on the values of the
local-potential parameters. The inclusion of the sixth-
order invariants in expansion (4) shows that their influ-
ence on the results obtained at least for a low tempera-
ture is also insignificant. As for the molecular field Emf,
its influence on the potential parameters can be notice-
able. However, the inclusion of this field in the set of fit-
ting parameters in the data processing had almost no
effect (the agreement between the experimental and
theoretical spectra depended on Emf only slightly). For
this reason, we neglect the rhombohedral distortion, the
sixth-order invariants, and the influence of the molecu-
lar field in this study.

If the measurement temperature exceeds the Debye
temperature and the classical approximation can there-
fore be used, then the probability of finding the atom at
an arbitrary point of the crystal is determined by the
potential energy at this point, ρ(r) ~ exp[–V(r/kT)]. At
lower temperatures, it is necessary to take into account
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Fig. 1. Fragment of the fcc lattice with a Ge atom moving in
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the quantum character of the atomic motion. In this
case, the relation between ρ(r) and V(r) becomes more
complicated (see Section 5). The classical-approxima-
tion calculations are discussed in Section 4. In Section 5,
we calculate the vibration spectrum of a Ge atom mov-
ing in the obtained anisotropic multiwell potential. By
comparing the distribution functions calculated in the
classical approximation and using the rigorous quan-
tum-mechanical approach, we show that these func-
tions are essentially different and, consequently, the
determination of the potential parameters requires a
quantum-mechanical approach. The data obtained
within the quantum-mechanical approach are given in
Section 6.

3. EXPERIMENT

Measurements were made on polycrystalline
Sn1 − xGexTe solid solution samples with x = 0.4, 0.7,
and 1.0. The samples were obtained by alloying binary
compounds and subsequent homogenizing annealing at
620°C for 48 h. Immediately prior to measurements,
the samples were ground into a powder, which was
sieved afterwards. The powdered material was depos-
ited on an adhesive tape. The absorbing-layer thickness
optimum for recording spectra was obtained by folding
this tape 8 to 16 times.

The EXAFS spectra at the Ge K-absorption edge
(11.103 keV) were recorded at station 7.1 of the syn-
chrotron radiation source (SRS, Great Britain) with an
electron energy of 2 GeV and a current of 240 mA.
Radiation was monochromatized using a Si (111) dou-
ble-crystal monochromator. The spectra were recorded
in the transmission geometry. The intensities of the
radiation incident on (I0) and transmitted through (It)
the sample were measured by ionization chambers. The
samples were placed into a nitrogen cryostat whose
temperature could be varied in the temperature range
from 77 to 300 K.

The EXAFS function was extracted from the
absorption spectra xµ(E) = ln(I0/It) (where E is the pho-
ton energy) using the traditional method [17, 18]. After
subtracting the background due to absorption by other
atoms, we extracted the monotonic part of the atom
absorption xµ0(E) using splines and calculated the
dependence of the quantity χ(k) = (xµ – xµ0)/xµ0 on the
photoelectron wave vector k = [2m(E – E0)/�2]1/2. The
energy corresponding to the inflection point at the
absorption edge was taken as the zero of energy E0. The
value of the jump in xµ at the absorption edge varied
from 0.19 to 0.50.

Using the direct and inverse Fourier transforms with
a modified Hanning window [17], we extracted the
information on the first coordination shell from the
experimental χ(k) curves. The typical range of extrac-
tion in the R space was ∆R = 1.65–3.55 Å and that in the
k space was ∆k = 2.8–12.7 Å–1. The subsequent data
processing included varying the parameters of the prob-

lem (a, d, , , a0, and the shift dE0 in the zero of
energy [17]) to determine their values corresponding to
the minimum rms deviation of the theoretical kχ(k)
spectrum from the spectrum extracted from the experi-
mental curve in the way mentioned above. The FEFF
computer program [19] was used to find the functions
f(k, π), δ1(k), and λ(k) necessary for calculating the the-
oretical spectra.

As is well known [17], the number of fitting param-
eters used to analyze the EXAFS data must not exceed
the number of independent parameters Nind =
(2/π)∆R∆k in the data. In our case, the number of
adjustable parameters was six and Nind = 9–12.

4. CLASSICAL APPROXIMATION

For a Sn0.3Ge0.7Te sample, the typical EXAFS spec-
tra extracted by the method described above and the
best fit to them obtained by the method described in
Section 2 are shown in Fig. 2 for three different temper-
atures. The small discrepancy between the curves is due
to the fact that the procedure used to extract the signal
from the first coordination shell cannot completely sup-
press the contribution from the second coordination
shell.

Figure 3 shows a cross section of constant-energy
surfaces calculated using the obtained parameters of the
potential for the sample with x = 0.7 at T = 80 K. It is
seen that the equal-potential curves are substantially
elongated in the 〈111〉 direction and the potential
energy increases most rapidly for displacements in the
〈100〉 direction.

The temperature dependences of the parameters a,

, and |d | for all Sn1 – xGexTe samples under study
are given in Figs. 4–6.1 It is seen from comparing
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retical (solid lines) EXAFS spectra for a Sn0.3Ge0.7Te sam-
ple at various temperatures T: (1) 80, (2) 180, and (3) 275 K.
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Figs. 4 and 6 that the parameter |d | is two orders of
magnitude greater than the parameter a. This means
that the potential is characterized by strong anisotropy.
Indeed, as follows from Eq. (5), the minimum value of
the coefficient of r4 (equal to a) is reached for displace-
ments of the Ge atom in the 〈111〉 direction, and the
maximum value (equal to a + |d |/3), for displacements
in the 〈100〉 direction. This is not surprising, because
the Te atoms near a Ge site are located along the 〈100〉
direction and displacements in this direction are
accompanied by a strong nonlinear repulsion. At the
same time, along the 〈111〉 direction, there is a dimple

1 It should be noted that we failed to reliably determine the param-
eters for a number of spectra recorded at high temperatures. Prob-
ably, it is necessary to take sixth-order invariants into account in
processing these spectra.

in the closely packed atomic plane and it is much easier
for the off-center Ge atoms to be displaced in this direc-
tion (Fig. 1).

As follows from Eq. (5), the potential-well depth is

Uw = . Estimations of Uw give ≈40 meV for the
sample with x = 1, ≈30 meV for the sample with x = 0.7,
and ≈20 meV for the sample with x = 0.4. Thus, the
dimensionless parameter s = Uw/kTc is about 0.65 for all
samples studied. This means that the PT in a
Sn1 − xGexTe solid solution is intermediate between the
displacement and order–disorder types.

We note that, in earlier experimental studies, the off-
center atomic displacement discovered above the Curie
temperature was associated with an order–disorder PT.
However, this conclusion is not unambiguous, because

aRmin
4

20

[001]

[110]

40
80

0
E, meV

[111]

–20
–10

E, meV

0

0 0.2 0.4 0.6
R, Å

0.6

0

0.2

0.4

R
, Å

Fig. 3. Constant-energy surfaces of the potential well in a
plane perpendicular to a 〈110〉 axis for a Sn0.3Ge0.7Te sam-
ple at 80 K.

2.0

1.5

1.0

0.5

0

a,
 e

V
/Å

4

10050 150 200 250 300
T, K

x = 1.0
0.7
0.4

Fig. 4. Temperature dependence of the parameter a for
Sn1 − xGexTe samples with various values of x.

0.35

0.30

0.25

0.20

R
m

in
, Å

2

10050 150 200 250 300
T, K

x = 1.0
0.7
0.4

0.15

Fig. 5. Temperature dependence of the parameter  for

Sn1 – xGexTe samples with various values of x.

Rmin
2

250

200

150

100|d
|, 

eV
/Å

4

10050 150 200 250 300
T, K

x = 1.0
0.7
0.4

50

0

Fig. 6. Temperature dependence of the parameter d for
Sn1 − xGexTe samples with various values of x.



PHYSICS OF THE SOLID STATE      Vol. 49      No. 6      2007

PARAMETERS OF THE POTENTIAL WELL 1137

in the microscopic model the type of a PT is determined
by the parameter s, as mentioned in Section 1. Thus, in
order to prove that a PT is of the order–disorder type, it
is necessary to analyze the shape of the potential well
and verify that the well depth satisfies the condition
Uw � kTc.

The strong temperature dependence of the parame-

ters a and  observed in this study is an unexpected
result.2 It follows from Figs. 4 and 5 that, for the sam-

ples with x ≥ 0.7, the parameter a decreases and 
increases as the temperature increases, with the poten-

tial-well depth Uw =  remaining practically
unchanged in this case. It should be noted that these
sufficiently strong changes in the potential parameters
do not lead to a noticeable change in the mean-square
atomic displacement from a lattice site. The calculation
of the temperature dependence of the quantity

(6)

shows that the displacement of the “center of gravity”
of the distribution function does not exceed 0.04 Å
(12%) as the temperature T increases from 80 to 300 K.
One of the reasons for this variation is the thermal
expansion of the crystal, although this reason is not
likely to be the only one.

As follows from Fig. 4, the extrapolation of the a(T)
dependences for the samples with x ≥ 0.7 to high tem-
peratures predicts negative values for the parameter a at
the Curie temperature (Tx ≈ 700 K for the sample with
x = 1 and ≈500 K for the sample with x = 0.7). It was
shown in [3] that, for displacement-type PTs (s � 1),
there is a direct relation between the coefficient of the
fourth power of the order parameter (Ath) in the thermo-
dynamic potential and the coefficient a in the micro-
scopic potential. Therefore, the negative values of a
could indicate that the PT is of the first order (which is
the case if Ath < 0). However, in our case (s ~ 1), the
relation between the coefficients Ath and a is much more
complicated [20]. Unfortunately, we cannot determine
the sign of Ath on the basis of the obtained parameters
of the microscopic potential, because, in order to esti-
mate Ath, we need to know the values of the sixth-order
coefficients in the expansion of Vloc(r), but they were
neglected in our analysis of the data. In addition, the
inclusion of the molecular field (also neglected in this
study) can affect the obtained results. These problems
require further studies.

2 Because of the three-dimensional character of the problem under
study, estimating the statistical errors in the experimental deter-
mination of the parameters is an independent complicated prob-
lem. At present, we can estimate the errors from the scatter of the
parameters for spectra recorded under the same conditions.
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5. VERIFICATION OF THE APPLICABILITY 
OF THE CLASSICAL APPROXIMATION

The data processing described above was based on
the use of the classical approximation. By solving the
problem by a rigorous method (using quantum mechan-
ics) and verifying that both solutions coincide, one can
justify the application the classical approximation.

To calculate the distribution function by the rigorous
method, it is necessary to solve the Schrödinger equa-
tion for the strongly anisotropic and anharmonic poten-
tial V(r) obtained in the classical approximation and
find its wave functions {ψi} and eigenvalues {Ei}. The
Schrödinger equation was solved by a numerical varia-
tional method in one octant on a lattice with dimensions
121 × 121 × 121. The symmetry of the solution was
taken into account using boundary conditions. The
energy spectrum of the Ge atom in the potential well
obtained in the classical approximation is shown in
Fig. 7a. It is seen that the lowest energy level is
5.3 meV above zero (the value of the potential V(0) is
taken as the zero of energy), i.e., approximately 30
meV above the potential minimum. This means that the
atom is not localized in a minimum, although the poten-
tial has many minima. We assume that the strong
“expulsion” of energy levels is a consequence of the
strong anisotropy in our problem: the localization of the
atomic motion in “channels” extended in the 〈111〉
directions (Fig. 3) leads to a considerable increase in
the atom kinetic energy. Thus, the quantum effects in
our problem turn out to be unexpectedly important.

In Fig. 8, the distribution function obtained from
processing the EXAFS spectrum for a Sn0.3Ge0.7Te
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Fig. 7. Vibration spectrum of a Ge atom in potential wells
obtained in the classical approximation and using the quan-
tum-mechanical approach for a Sn0.3Ge0.7Te sample at
80 K.
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sample at 80 K in the classical approximation (ρ(r) ~
exp[–V(r)/kT]) is compared with the function

(7)

calculated by quantum statistics methods using the first
twenty wave functions corresponding to the same
potential V(r). As follows from Fig. 8, the graphs of
these distribution functions differ essentially in both the
shape and the position of the maximum. This demon-
strates that, in studying multiwell potentials, the classi-
cal approximation is inapplicable to the processing of
EXAFS spectra, at least those obtained at low tempera-
tures.

6. QUANTUM-MECHANICAL APPROACH

Under a rigorous quantum-mechanical approach
with quantum effects consistently taken into account,
the problem of the EXAFS data processing becomes
much more complicated. For parametrized potential
(5), it is necessary first to calculate the wave functions
and eigenvalues and substitute them into Eq. (7). Then,
the obtained distribution function ρ(r) can be inserted
in Eq. (3) to calculate the EXAFS function χ(k). By
varying the parameters of the potential and repeating
quantum-mechanical calculations each time, one can
find (using one of the minimization algorithms) the set
of parameters for which the rms discrepancy between
the theoretical and experimental EXAFS spectra
becomes minimum.

ρ r( ) 1
Z
--- e

Ei/kT–
ψi r( ) 2

, Z
i

∑ e
Ei/kT–

,
i

∑= =

Because the proposed approach is very time-con-
suming, we should perform calculations using a mini-
mum set of wave functions to estimate the potential
parameter values. If the EXAFS spectra are measured
at a sufficiently low temperature, then only several low-
est energy levels are occupied in the vibration spec-
trum. However, because the vibration spectrum
depends on the potential parameters in a complicated
way and because the number of wave functions to be
taken into account is unknown, we solved the problem
using the iteration method. We processed the same
EXAFS spectra of the Sn0.3Ge0.7Te and GeTe samples
(recorded at the lowest temperature, 80 K) until the
energy of the previously neglected levels became
approximately 2kT greater than the energy of the
ground state.

First, we assumed that, in order to describe the
motion of the Ge atom, it suffices to take into account
only the lowest 1A1g level (corresponding to the zero-
point energy).3 The vibration spectrum for the potential
determined in this approximation is shown in Fig. 7b,
and the values of the potential parameters, in the table.
Because the splitting of the low-lying excited energy
levels is only ∆E = 0.346 meV � kT and, consequently,
these states are approximately equally excited, it is
clear that our approximation is not good.

Next, we considered the problem in which the four
lowest levels (1A1g, 1T1u, 1T2g, 1A2u) are included and
the threefold degeneracy of the T1u and T2g levels is
taken into account. The results of these calculations are
given in Fig. 7c and in the table. Because the 2A1g level
(the lowest level not taken into account in this approxi-
mation) turned out to be higher than the ground level by
only 2.466 meV (which is less than kT), it is clear that
one should include a larger number of wave functions.

Calculations with the inclusion of eight wave func-
tions (1A1g, 1T1u, 1T2g, 1A2u, 2A1g, 2T1u, 2T2g, 2A2u) are
quite acceptable, because the nearest level not taken
into account (3A1g) is higher that the ground level by
6.989 meV, which is slightly greater than kT (see
Fig. 7d and table).

Finally, calculations with the inclusion of twelve
wave functions (the 3A1g, 3T1u, 3T2g, and 3A2u states are
added) yield the most reliable results; the nearest level
not taken into account is 13.356 meV higher than the
ground state (see Fig. 7e and table).

Now, we consider the character of the variations in
the potential parameters caused by the inclusion of a
greater number of wave functions and compare these
parameters with those obtained in the classical approx-
imation. As is seen from the table, the agreement
between the theoretical and experimental curves (char-

3  In the notation for wave functions, the first numeral is the princi-
pal quantum number (it determines the number of zeros in the
radial part of the wave function, just as in the hydrogen atom) and
the symbols following it indicate the angular symmetry of the
function.
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Fig. 8. Comparison of (1) the distribution function in a
〈111〉 direction obtained by processing the EXAFS spec-
trum for Sn0.3Ge0.7Te samples at 80 K in the classical
approximation and (2) the quantum-mechanical distribution
function obtained using twenty wave functions for the
potential found in the classical approximation. The thin
solid, dashed, and dotted lines correspond to the contribu-
tions of the first twelve wave functions to the quantum-
mechanical distribution function.
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acterized by the rms deviation Σ) improves as the num-
ber of wave functions increases. The quantum character
of atomic motion most strongly affects the position of
the potential minimum Rmin and the potential-well
depth Uw (see table).The well depth calculated with the
inclusion of twelve wave functions is 60–80% greater
than that obtained in the classical approximation. The
values of d in both approaches turn out to be close, and
the value of a is slightly greater in the quantum-
mechanical approach.

The quantum-mechanical calculation shows that, in
all cases considered, the energy of the 1A1g ground state
is positive; i.e., the Ge atom is not localized in a mini-
mum. Nevertheless, the maxima of the atomic distribu-
tion function are displaced from the lattice site (Fig. 9).
The transition rate from one off-center position to
another can be estimated from the splitting of the 1A1g–
1A2u levels, which is ∆E = 0.387 meV for Sn0.3Ge0.7Te
and 0.142 meV for GeTe and corresponds to a “life-
time” of a particle in one minimum τ = �/∆E ≈ (1.7–
4.6) × 10–12 s. In this case, the typical transition fre-
quency is one order of magnitude less than the charac-
teristic frequency of the soft mode.

7. DISCUSSION

As shown above, the shape of the potential well
found using the classical and quantum-mechanical
approximations is qualitatively the same and the well
parameters do not differ significantly. Although the
quantum-mechanical problem was solved only for one
temperature value, it can be expected that the pattern of
the temperature dependences of the parameters a and

 remains qualitatively the same in both the classi-
cal and quantum-mechanical approaches. This conclu-
Rmin

2

sion is based on the fact that, first, the potential param-
eters in both approaches must coincide in the high-tem-
perature limit and, second, the difference between the
parameters at 80 K in both approaches is less than the
change in these parameters over the temperature range
80–300 K in the classical approach.

One would think that the use of the quantum-
mechanical approach in the data processing only
refines the values of the potential parameters. However,
this is not the case; namely, this approach leads to a
qualitatively new result concerning the character of the
particle motion. According to the classical approach to
the problem of motion of off-center atoms, their reori-

Parameters of the potential and the potential-well depth obtained from processing the EXAFS spectra of Sn0.3Ge0.7Te and
GeTe at 80 K within the classical approximation (CA) and the quantum-mechanical approach using various numbers of wave
functions

Number of wave 
functions a, eV/Å4 , Å2 d, eV/Å4 Uw , meV Σ

Sn0.3Ge0.7Te

CA 0.8476 0.1717 –137.19 24.91 0.016752

1 0.6924 0.2321 –85.60 37.30 0.017427

4 0.5032 0.2553 –80.21 32.80 0.017309

8 0.7863 0.2266 –115.28 40.36 0.017153

12 0.9662 0.2166 –142.77 45.32 0.017078

GeTe

CA 1.4864 0.1414 –172.91 29.73 0.014853

1 1.0996 0.1858 –95.21 37.95 0.015388

4 0.9212 0.1993 –109.07 36.61 0.015220

8 1.4183 0.1763 –133.83 44.08 0.015058

12 1.7146 0.1686 –154.39 48.74 0.015041

Rmin
2
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Fig. 9. Comparison of the distribution functions along a
〈111〉 direction found by processing the EXAFS spectrum
for a Sn0.3Ge0.7Te sample at 80 K (1) in the classical
approximation and (2) using the quantum-mechanical
approach. The potential parameters are taken from the last
two rows of the table.
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entation occurs by overcoming the potential barriers
separating different wells. An example of this type of
motion is the motion of an off-center Li atom in KTaO3.
Measurements of the relaxation time of the Li atom by
the NMR and dielectric relaxation methods have shown
that the dipole reorientation is thermally activated with
an activation energy of 0.085 eV [21]. The results
obtained in this work for the off-center Ge atom in
Sn1 − xGexTe show that the lower vibration levels of this
atom are located near the potential maximum at r = 0
within several millielectronvolts. Consequently, the
atomic transitions from one off-center position to
another occur either by tunneling or by passing over
barriers. For this reason, it can be expected that, in the
limit T  0, the dipole reorientation rate will remain
high and, hence, the dynamics of the off-center atom
will not “frozen”.

The distinctions between the dynamics of off-center
Li atoms in KTaO3 and off-center Ge atoms in
Sn1 − xGexTe indicate that these atoms are examples of
static and dynamic impurities, respectively (similar to
Jahn–Teller impurities). For a Li atom, the quantum
effects are insignificant due probably to the fact that the
off-center displacement of this atom is 1.26 Å (which is
three times greater than that of the Ge atom in
Sn1 − xGexTe) and, therefore, the probability of tunnel-
ing transitions between the wells is low for this atom
(the “lifetime” of the atom in a minimum is ~104 s
[22]). In this connection, it would be interesting to
study the intermediate case of an off-center Ge atom in
PbTe, whose displacement is 0.7 Å [10].

The dynamic character of the off-center Ge atom in
Sn1 – xGexTe explains the illusory contradiction
between the EXAFS data demonstrating the existence
of off-center atoms and the physical properties showing
that the PTs in Sn1 – xGexTe are of the displacement
type.

Our quantum-mechanical calculations have been
performed without inclusion of the molecular field and,
therefore, describe the motion of the system above the
PT point. The case of a nonzero molecular field will be
studied in a later paper. Nevertheless, the conclusion
that it is necessary to take into account the quantum
character of the atomic motion in analyzing the proper-
ties of a system with off-center atoms is an important
result of this study.

8. CONCLUSIONS

We have proposed an approach that makes it possi-
ble to determine the shape of the three-dimensional
potential of an off-center atom and the parameters of
the microscopic ferroelectricity model from EXAFS
data. For Sn1 – xGexTe solid solutions with x ≥ 0.4, we
have found the temperature and composition depen-
dences of the multiwell-potential parameters for a Ge
atom in the classical approximation. The potential-well
depth varies from 20 to 40 meV depending on the Ge

content in the sample. It has been shown that the phase
transition (PT) in these crystals is intermediate between
the displacement and order–disorder types.

Analyzing the applicability of the classical approxi-
mation has revealed that it is necessary to take into
account quantum effects in determining the parameters
of potential wells in strongly anisotropic systems, such
as off-center Ge atoms in Sn1 – xGexTe. An algorithm
has been proposed for data processing in which the the-
oretical EXAFS spectrum and the distribution function
are calculated from strict formulas of quantum statistics
using calculated wave functions. The fact that the lower
vibration energy level of the Ge atom coincides with the
maximum energy in the potential well to within several
millielectronvolts is an unexpected result of our quan-
tum-mechanical calculations. The high probability of
an off-center atom tunneling through or passing over
the barrier between the potential-well minima prevents
dipole reorientations from being frozen at low temper-
atures. This special feature explains the illusory contra-
diction between the physical properties showing the
closeness of the PTs in Sn1 – xGexTe to the displacement
type and the EXAFS data demonstrating the large dis-
placements of Ge atoms from the lattice sites above the
Curie temperature.
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