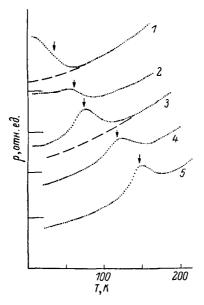
УДК 621.315.592

РЕНТГЕНОВСКИЕ И ЭЛЕКТРИЧЕСКИЕ ИССЛЕДОВАНИЯ ФАЗОВОГО ПЕРЕХОДА В Pb_{1-x}Ge_xSe

В. Ф. Козловский, А. И. Лебедев, Ю. Е. Петров

В электрических измерениях, проведенных на монокристаллических образцах *n*-Pb_{1-x}Ge_xSe (x=0.02-0.08), обнаружено аномальное рассеяние носителей, указывающее на происходящий в кристаллах фазовый переход (ФП) 2-го рода. Установлена зависимость температуры ФП от состава кристалла. Рентгеновскими исследованиями доказан ромбоэдрический тип искажения кубической решетки ниже T_o и найдена температурная зависимость угла ромбоэдра. Показано, что введение примеси таллия реако понижает температуру ФП. Обсуждаются причины закономерного понижения T_o в твердых растворах халькогенидов свинца — германия при замещении $Te \rightarrow Se \rightarrow S$.

В последние годы резко возрос интерес к исследованию структурных фазовых переходов (ФП) в узкозонных полупроводниках группы A^4B^6 . Наиболее подробно изучены ФП в SnTe и твердых растворах $Pb_{1-x}Ge_xTe$, $Pb_{1-x}Sn_xTe$; свойства $Pb_{1-x}Ge_xSe$ в этом плане почти не исследованы. Обнаруженная в [¹] особенность на температурной зависимости ширины запрещенной зоны в $Pb_{0.96}Ge_{0.04}$ Se связывалась с происходящим ФП 2-го рода. О том же может свидетельствовать и отрицательный температурный коэффициент ширины запрещенной зоны, обнаруженный в кристаллах с x=0.2 и 0.3 [²]. Однако до сих пор никаких сведений о кристаллической структуре $Pb_{1-x}Ge_x$ Se при низкой температуре и о зависимости температуры ФП от состава твердого раствора в литературе опубликовано не было.


Интерес к изучению ФП в $Pb_{1-x}Ge_xSe$ вызван следующими обстоятельствами. В $Pb_{1-x}Ge_xTe$ появление сегнетоэлектрического ФП связывается с кооперативным движением нецентральных атомов Ge^{+2} в решетке PbTe [^{3, 4}]. Ввиду сходства соединений PbTe и PbSe аналогичное поведение атомов Ge можно ожидать и в твердом растворе $Pb_{1-x}Ge_xSe$. Во-вторых, в кристаллах $Pb_{1-x}Ge_xSe$ *p*-типа проводимости атомы Ge могут находиться в двух зарядовых состояниях (Ge⁺² и Ge⁺⁴) [⁵], что неизбежно должно отражаться на кооперативном поведении атомов Ge. Для объяснения особенностей поведения уровня Ферми в таких образцах уже привлекались идеи о локальном фазовом переходе в системе примесных атомов Ge [⁵].

Для выяснения этих вопросов в настоящей работе проведены электрические и рентгенодифрактометрические исследования, позволившие определить зависимость температуры $\Phi\Pi$ от состава твердого раствора $Pb_{1-x}Ge_xSe$ и установить тип искажения кубической решетки в низкосимметричной фазе.

Электрические исследования выполнены на монокристаллах Pb_{1-x}Ge_xSe (x=0.02-0.08) *п*-типа проводимости ($n \simeq 2 \cdot 10^{19}$ см⁻³), выращенных методом сублимации. Состав кристаллов совпадал с точностью 0.1 ат. % с составом шихты. Параметр кристаллической решетки *a* определялся с точностью ± 0.0003 Å на однофазных отожженных при 620 °C порошках на дифрактометре ДРОН-2 по линиям разрешенного K_x -дублета Со-излучения с экстраполяцией данных к $\theta = 90^\circ$. Зависимость *a* от состава кристаллов оказалась нелинейной и при 20 °C описывалась эмпирической формулой а $(x) = 6.1253 - 0.327x - 0.51x^2$ (Å). Полученная зависимость согласуется с данными [⁶], но явно отличается от результатов [²].

Низкотемпературные рентгеновские исследования проводились на дифрактометре ДРОН-1 с приставкой УРНТ-180. Методика электрических измерений была аналогична описанной в [⁷].

Электрические измерения . Температурные зависимости удельного сопротивления $\rho(T)$ образцов $Pb_{1-x}Ge_xSe$ различного состава показаны на рис. 1. У всех исследованных образцов на кривых $\rho(T)$ наблюдается особенность, температура которой (T_c) закономерно возрастает с увеличением содержания Ge в кристаллах. Появление этой особенности мы связываем с аномальным рассеянием носителей, вызван-

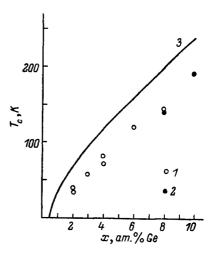


Рис. 1. Зависимость удельного сопротивления ρ от температуры для образцов n-Pb_{1-x}Ge_xSe различного состава. x, ат.%: 1 - 2, 2 - 3, 3 - 4, 4 - 6, 5 - 8. Штриховые линии показывают поведение кривых ρ (T) в PbSe (без ФП). Стрелками указаны значения T_c . В образцах с малыми х появление особенности при T_c удается надежно обнаружить только на кривых $d\rho/dT$ (T).

Рис. 2. Зависимости температуры T_o от состава x образцов $Pb_{1 \sim x}Ge_xSe$.

1 — данные электрических измерений, 2 — данные рентгеновских измерений, 3 — зависимость $T_e(x)$ для $Pb_{1-x}Ge_xTe$.

ным ФП в кристаллах $Pb_{1-x}Ge_xSe$. Амплитуда особенности резко (примерно как $\Delta \rho \sim x^2$) возрастает с увеличением x. Достаточно большая полуширина этой особенности по сравнению с $Pb_{1-x}Ge_xTe$ [^{7, 8}], по-видимому, обусловлена более высокой концентрацией электронов в наших образцах.

В образцах $Pb_{1-x}Ge_xSe$ с $x \leqslant 0.04$ наблюдается эффект «закалки», аналогичный обнаруженному ранее в $Pb_{1-x}Ge_xTe$ и $PbTe_{1-x}S_x$ [⁹]: величина ρ (4.2 K) после закалки образдов от температуры T_{σ} в жидкий гелий была на 5—13 % больше, чем после медленного охлаждения. В образдах с малыми x при низких температурах обнаружено необычно сильное возрастание ρ , которое исчезает при увеличении x (рис. 1). Аналогичное, хотя и менее выраженное, возрастание ρ наблюдалось ранее в $Pb_{1-x}Ge_xTe$ [¹⁰]. Таким образом, можно видеть, что в $Pb_{1-x}Ge_xSe$ и $Pb_{1-x}Ge_xTe$ сообенности в рассеянии носителей, вызванные $\Phi\Pi$, оказываются практически одинаковыми.

Зависимость температуры T_c от состава x твердого раствора $Pb_{1-x}Ge_xSe$ представлена на рис. 2. Там же для сравнения приведена кривая $T_c(x)$ для $Pb_{1-x}Ge_xTe$ [8]. Зависимости $T_c(x)$ в обоих материалах ведут себя аналогично; кривая для $Pb_{1-x}Ge_xSe$ проходит ниже кривой для $Pb_{1-x}Ge_xTe$. Температура ФП, определенная в [¹] из данных по оптическому поглоще-

3611

3*

нию в кристалле $Pb_{1-x}Ge_xSe$ с x=0.04 ($T_e\simeq 96$ K), хорошо согласуется с нашими результатами.

Отсутствие гистерезиса на кривых ρ (*T*), записанных при охлаждении и нагревании, говорит о том, что $\Phi\Pi$ в $Pb_{1-x}Ge_xSe$ является переходом 2-го рода. Этот вывод подтверждается рентгеновскими исследованиями, к изложению которых мы переходим.

Рентгеновские исследования. Хотя приведенные выше данные позволяют с уверенностью говорить о ФП в Pb_{1-x} Ge_xSe, они не позволяют судить о том, насколько этот ФП близок к переходу 1-го рода, а также установить тип искажения кубической решетки. Кроме того, надо было выяснить, насколько точно температура особенности в $\rho(T)$ совпадает с температурой структурного ФП, определенной из рентгеновских измерений.

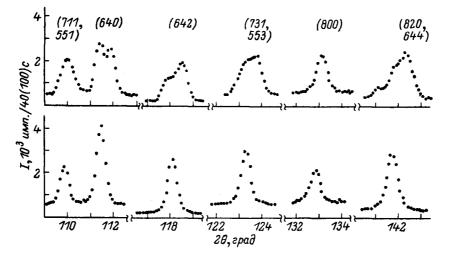


Рис. 3. Дифрактограммы образца $Pb_{0.90}Ge_{0.10}Se$ при T=96 К (вверху) и T=174 К (внизу).

Время накопления — 40 с для рефлексов (642, 820), 100 с — для остальных.

Измерения проводились на Си-излучении. Монохроматор (LiF) был настроен на K_{β} -линию ($\lambda = 1.39217$ Å). Дифрактограммы записывались в режиме сканирования с шагом 0.1° (в углах 2 θ); время накопления составляло 40—100 с. Для последующего определения величин расщепления рефлексов, профили дифракционных линий аппроксимировались несколькими аналитическими функциями. Наилучшее описание профиля линии было получено при использовании функции Пирсона

$$I(\theta) = I_{\phi o \pi} + A / \left(1 + \frac{(\theta - \theta_0)^2}{\Delta^2}\right)^3,$$

для которой минимизируемая функция

$$F = \sum_{i=1}^{m} (I_{\operatorname{skcm}}(\theta_i) - I_{\operatorname{pacq}}(\theta_i))^2 / I_{\operatorname{skcm}}(\theta_i)$$

достигала значений, определяемых флуктуациями статистики счета (согласно критерию χ^2 , $F \simeq \chi^2_{0.5}$ (m)).

Дифрактограммы образца $Pb_{0.90}$ Ge_{0.10}Se при температурах вблизи T_c и ниже T_c показаны на рис. З. Видно, что ниже T_c дифракционные линии испытывают заметные искажения, причем рефлексы типа (*hk0*) расщепляются на две линии равной интенсивности, (*hhh*) — на две линии неравной интенсивности, рефлексы (*hkl*) испытывают более сложное искажение, а рефлексы (*h00*) не изменяются. Аналогичные, хотя и меньшие по величине, искажения наблюдались на дифрактограммах образца с x=0.08.

Наблюдаемое расщепление линий однозначно свидетельствует о ромбоэдрическом искажении кубической решетки, как и в случае сегнетоэлектрического ФП в $Pb_{1_x}Ge_x$ Те. Этот вывод показывает ошибочность предположения [¹] о том, что ФП в $Pb_{1_x}Ge_x$ Se происходит в орторомбическую фазу, в которой кристаллизуется GeSe.

Предполагая, что ширина индивидуального рефлекса в низкотемпературной фазе остается такой же, как в кубической фазе, из анализа профилей нескольких линий была рассчитана температурная зависимость угла ромбоэдра α (рис. 4). Значения углов α , определенных из анализа различных линий, хорошо совпадают. Температура T_c , определенная из рентгеновских измерений, разумно согласуется с данными электриче-

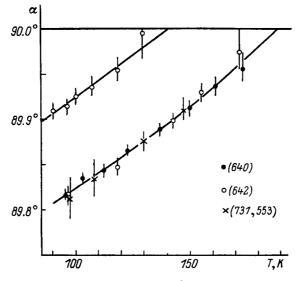


Рис. 4. Температурные зависимости угла ромбоздрического искажения кубической решетки α для образцов Pb_{1-x}Ge_xSe с x=0.08 и x=0.10.

Ошибки определения угла а вычислены из условия $F = \chi_s^2(m)$ при доверительной вероятности $\varepsilon = 0.95$.

ских измерений (рис. 2). Искажение решетки около T_{o} приближенно описывается формулой $\Delta \alpha = \pi/2 - \alpha \simeq 4 \cdot 10^{-5} (T_{o} - T)$; непрерывный характер изменения угла α (T) говорит о том, что ФП в $Pb_{1-x}Ge_xSe$ является переходом 2-го рода.

Обсуждение результатов. Близость концентрационных зависимостей $T_o(x)$ и сходное проявление ФП в электрических свойствах $Pb_{1-x}Ge_xSe$ и $Pb_{1-x}Ge_xTe$ свидетельствует о том, что ФП в обоих материалах вызван присутствием атомов Ge. Известно, что халькогениды германия кристаллизуются в ромбоэдрической (α -GeTe) и ромбической (GeS, GeSe) решетках, для которых характерно такое смещение атомов Ge, при котором они образуют три короткие связи с атомами халькогена. Поэтому по-явление ромбоэдрического, а не ромбического, искажения решетки в кристаллах с небольшой концентрацией атомов Ge представляется вполне допустимым, хотя при этом в $Pb_{1-x}Ge_x$ Se следует ожидать появления еще одного концентрационного ФП 1-го рода между ромбоэдрической и ромбической фазами.

Полагая, как это установлено для большого числа систем твердых растворов [¹¹], что длины связей металл—халькоген в твердом растворе такие же, как в бинарных соединениях, были оценены величины смещений атома Ge из узла кубической решетки в направлении <111>. Они оказались равными $\simeq 0.9$, 1.1 и 0.8 Å для Pb_{1-x} Ge_xTe, Pb_{1-x} Ge_xSe и Pb_{1-x} Ge_xS coorветственно. Поэтому можно было бы ожидать возрастания T_e при переходе от теллуридов к селенидам.

3613

По нашим экспериментальным данным, однако, наблюдается тенденция понижения T_c при переходе к соединениям с более легкими халькогенами: в $Pb_{0.90}Ge_{0.10}Se~T_c$ ниже, чем в $Pb_{0.90}Ge_{0.10}Te$, а в твердом растворе $Pb_{0.90}Ge_{0.10}S$ рентгеновские измерения не обнаружили ФП вплоть до 90 К. Только электрические измерения, проведенные на отожженном поликристаллическом образце $Pb_{0.90}Ge_{0.10}S$, позволили наблюдать особенность типа аномального рассеяния при $T \simeq 60$ К.

Наблюдаемые расхождения, по-видимому, связаны с тем, что эффективное диполь-дипольное взаимодействие атомов Ge в действительности определяется не только величиной их смещения, но и величинами радиусов корреляции r_0 [¹²] и эффективных зарядов Z в матрицах халькогенидов свинца. Последние велики во всех халькогенидах свинца и уменьшаются при переходе к более легким халькогенидам вследствие возрастания степени ионности связей [¹³]. Оценки радиусов корреляции из имеющихся данных по неупругому рассеянию нейтронов дают значения $r_0 \simeq 6$ Å для PbS, PbSe и $\simeq 10$ Å для PbTe. Это позволяет рассчитать с помощью критерия $n_0 r_0^3 \simeq 0.013$ [¹⁴] порог возникновения сегнетоэлектрического упорядочения в «разбавленной» дипольной системе, при котором дальнее (направленное) поле превышает его локальные флуктуации. Для наших кристаллов мы получаем оценку $x_c = 0.1 - 0.3$ ат.% Ge в разумном согласии с экспериментом.

Перевод части атомов Ge в зарядовое состояние Ge⁴⁴ путем легирования кристаллов акцепторными примесями позволяет ожидать увеличения дипольного момента и тем самым повышения T_c . Нами была опробована эта возможность; для этого образцы Pb_{0.92}Ge_{0.08}Se легировались примесью Tl. Вопреки ожиданиям температура ФП в образца, содержащих 2 ат. % Tl, судя по рентгеновским данным, упала, как минимум, на 40 К ($T_c \leq 95$ K), хотя концентрация дырок в образцах была даже меньше, чем в нелегированных образцах *n*-типа. Этот результат означает либо то, что атомы Tl ведут себя подобно атомам In в Pb_{1-x}Ge_xTe [¹⁵], вызывая появление замороженных поляризованных дефектов, которые понижают T_c [¹⁶], либо то, что атомы Ge⁺⁴ искажают свое локальное окружение иначе, чем атомы Ge⁺², что также препятствует установлению дальнего порядка.

В [⁵] было обнаружено, что при некоторой температуре T_{xap} появлялся излом в температурной зависимости положения примесного уровня Ge⁺⁴ в *p*-Pb_{1-x}Ge_xSe, что связывалось с локальной перестройкой окружения этих атомов. Значения T_{xap} , однако, лежат в области температур 200—400 K, что заметно превышает наши значения T_c ; кроме того, T_{xap} убывает с ростом x. Поэтому перестройка центров при T_{xap} , хотя и может рассматриваться как своего рода $\Phi\Pi$, не сопровождается возникновением дальнего порядка.

В заключение обсудим причины возрастания ρ при низких температурах в образцах с малыми *х.* Для объяснения этого явления в образцах $Pb_{1-x}Ge_xTe$ предлагалась модель — аналог теории эффекта Кондо. Согласно этой модели, в кристаллах с нецентральными атомами удельное сопротивление при низкой температуре должно иметь слагаемое $\rho \sim -\ln T$. Похожие зависимости уже наблюдались в $Pb_{1-x}Ge_xTe$ [¹⁰], правда, в узком интервале температур. В наших образцах $Pb_{1-x}Ge_xSe$ возрастание ρ при низкой температуре не описывается такой зависимостью. Интересно, что дополнительное рассеяние в образце $Pb_{0.98}Ge_{0.02}Se$ начинается при температурах гораздо выше T_c , так что оно, по-видимому, даже не связано с существованием ФП в кристаллах. По этой причине это рассеяние трудно объяснить и замораживанием неравновесной конфигурации кластеров предупорядочения, наблюдающимся ниже T_c в $Pb_{1-x}Ge_xSe$, $Pb_{1-x}Ge_xTe$ и $PbTe_{1-x}S_x$ [⁹].

Авторы благодарят В. П. Зломанова за поддержку работы.

Литература

- [1] Бахтинов А. П., Водопьянов В. Н., Гуцуляк В. Г., Орлецкий В. Е. УФЖ, 1981, т. 26, № 12, с. 2056-2058.
 [2] Nikolić Р. М. J. Phys. D, 1969, vol. 2, N 3, p. 383-388.
 [3] Догачев Ю. А., Мойжес Б. Н. ФТТ, 1977, т. 19, № 9, с. 1793-1795.
 [4] Каtayama S., Мигазе К. Sol. St. Commun., 1980, vol. 36, № 8, p. 707-711.
 [5] Прокофьева Л. В., Зарубо С. В., Виноградова М. Н., Никулин Ю. А., Гару-ман К. Г. ФТП, 1982, т. 16, № 12, с. 2136-2140.
 [6] Krebs H., Langner D. Z. anorg. allg. Chem., 1964, Bd 334, № 1-2, S. 37-49.
 [7] Абдуллин Х. А., Лебедев А. И. ФТТ, 1983, т. 25, № 12, с. 3571-3576.
 [8] Такаока S., Мигазе К. Phys. Rev. B, 1979, vol. 20, № 7, p. 2823-2833.
 [9] Абдуллин Х. А., Демин В. Н., Лебедев А. И. ФТТ, 1986, т. 28, № 4, с. 1020-1025. 1025.
- 1025.
 [10] Yaraneri H., Grassie A. D. C., Yusheng He, Loram J. W. J. Phys. C, 1981, vol. 14, № 15, p. L441-444; Takano S., Kumashiro Y., Tsuji K. J. Phys. Soc. Jap., 1984, vol. 53, № 12, p. 4309-4314.
 [11] Martins J. L., Zunger A. Phys. Rev. B, 1984, vol. 30, № 10, p. 6217-6220.
 [12] Byemeŭcmep E. E., Глинчук М. Д. ЖЭТФ, 1980, т. 79, № 3, с. 947-952.
 [13] Волков Б. А., Кушнир В. П. ФТТ, 1983, т. 25, № 6, с. 1803-1811.
 [14] Byemeŭcmep E. E. ФТТ, 1984, т. 26, № 8, с. 2448-2455.
 [15] Лебедев А. И., Абдуалин Х. А. ФТП, 1984, т. 18, № 4, с. 624-627.
 [16] Леванюк А. П., Осипов В. В., Сигов А. Г., Собянин А. А. ЖЭТФ, 1979, т. 76, № 1, с. 345-368.

Московский государственный университет им. М. В. Ломоносова

Поступило в Редакцию 30 апреля 1986 г.