УЛК 538.958

О ПРИРОДЕ РАЗЛИЧИЯ ЗАРЯДОВОГО СОСТОЯНИЯ Ni В ТИТАНАТАХ БАРИЯ И СТРОНЦИЯ

© 2016 г. А. И. Лебедев*, И. А. Случинская

Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова", физический факультет *E-mail: swan@scon155.phys.msu.ru

Исследования легированного никелем твердого раствора $Ba_{1-x}Sr_xTiO_3$ методом XAFS-спектроскопии обнаружили, что зарядовое состояние Ni изменяется от 4 в $SrTiO_3$ до ~2.5 в $BaTiO_3$ при изменении x. Расчеты электронной структуры из первых принципов показывают, что никель создает примесную полосу в запрещенной зоне $BaTiO_3$ и $SrTiO_3$. Расчеты энергии образования вакансий кислорода позволяют объяснить различие в зарядовом состоянии Ni в этих соединениях различной энергией образования указанных вакансий.

DOI: 10.7868/S0367676516090301

ВВЕДЕНИЕ

Сегнетоэлектрические оксиды со структурой перовскита ABO_3 широко используются в современной электронике [1—3]. Тонкие пленки этих материалов находят широкое применение для создания перестраиваемых конденсаторов [4] и динамической оперативной памяти [1, 5].

Известно, что титанат бария ВаТіО3 с понижением температуры испытывает последовательные сегнетоэлектрические фазовые переходы из кубической Рт3т в тетрагональную Р4тт и далее в орторомбическую Amm2 и ромбоэдрическую R3m фазы. Выше 1460°C в нем происходит структурный фазовый переход в гексагональную фазу $P6_3/mmc$; температурой этого перехода можно управлять путем создания в ВаТіО3 вакансий кислорода или легирования его различными примесями [6]. Другое соединение – титанат стронция SrTiO₃ — является виртуальным сегнетоэлектриком, в котором при понижении температуры наблюдается смягчение ТО-моды, однако сам материал остается параэлектриком вплоть до самых низких температур [7]. При ~105 К в SrTiO₃ происходит фазовый переход, связанный с поворотами кислородных октаэдров, в фазу I4/mcm. Титанат бария и титанат стронция образуют непрерывный ряд твердых растворов $Ba_{1-x}Sr_xTiO_3$. При увеличении доли SrTiO₃ температуры всех фазовых переходов уменьшаются, а вблизи x = 0.8 они сливаются в один фазовый переход [8].

Сегнетоэлектрические перовскиты в последнее время привлекают большее внимание в связи с их возможным применением в новом типе преобразователей солнечной энергии на основе объ-

емного фотогальванического эффекта. Поскольку оксидные перовскиты имеют сравнительно большую ширину запрещенной зоны (\sim 3 эВ), для согласования их спектров поглощения со спектром излучения Солнца они могут быть легированы примесями 3d-элементов, которые создают так называемые центры окраски [9]. Теоретические исследования [10] показали, что легирование родственного соединения (PbTiO₃) двухвалентными примесями с электронной конфигурацией d^8 (Ni, Pd, Pt в узле B), компенсированными вакансией кислорода, позволяет уменьшить ширину запрещенной зоны до значений, оптимальных для эффективного преобразования энергии.

Титанат стронция, легированный 3d-примесями (Мп, Fe, Co и Ni), исследовался методами XAFS-спектроскопии в работах [11—13]. Эти исследования установили, что Ni является одной из наиболее перспективных легирующих примесей с точки зрения эффективного поглощения солнечного света. Образцы легированного никелем Sr- TiO_3 были почти черные, а замещающие титан ионы Ni находились в зарядовом состоянии 4+, что оказалось весьма неожиданным фактом. К сожалению, $SrTiO_3$ является виртуальным сегнето-электриком, и его легирование никелем не приводит к появлению сегнетоэлектричества. Поэтому было более интересно изучить свойства $BaTiO_3$, легированного никелем.

Введение Ni понижает температуру перехода в гексагональную фазу [6, 14—17]. Было установлено, что никель в $BaTiO_3$ проявляет акцепторные свойства [18], а легирование титаната бария никелем приводит к уменьшению диэлектрической

проницаемости и температуры Кюри, а также к размытию сегнетоэлектрического фазового перехода в ВаТіО₃ с ростом концентрации Ni [19—21]. В работе [6] было показано, что никель способствует переходу в гексагональную фазу, в то время как легирование ВаТіО₃ стронцием, напротив, препятствует этому переходу. В работе [14] отмечалось, что при легировании ВаТіО₃ никелем образцы меняют свой цвет на темно-коричневый.

Информация о зарядовом состоянии и структурном положении Ni в ВаТіО₃ была получена в основном из данных ЭПР и также довольно противоречива. Линии, наблюдавшиеся в спектрах ЭПР, приписывались либо ионам Ni^+ на узлах B[22], либо нецентральным ионам Ni^+ в узлах A[23]. В работе [17] ЭПР-исследования легированного никелем гексагонального ВаТіО3 обнаружили ионы Ni^{3+} , которые замещали ионы Ti^{4+} в двух различных положениях (Ті(1) и Ті(2)). Эти центры, однако, могли быть связаны не более чем с 5% от номинального количества никеля, т.е. большинство ионов Ni в образце находилось в ЭПР-неактивном состоянии. Данные о зарядовом состоянии и структурном положении никеля в SrTiO₃ были приведены в наших работах [12, 13]; для твердого раствора $Ba_{1-x}Sr_xTiO_3$ литературных данных найдено не было.

Таким образом, с одной стороны, сильное поглощение легированного никелем ВаТіО3 в видимой области спектра в сочетании с его сегнетоэлектрическими свойствами позволяют предположить, что этот материал может быть использован для солнечных преобразователей энергии на основе объемного фотогальванического эффекта. С другой стороны, несмотря на то что BaTiO₃(Ni) уже давно исследуется, литературные данные о растворимости Ni, критической концентрации примеси, необходимой для перехода ВаТіО₃ в гексагональную фазу, о зарядовом состоянии и структурном положении Ni в этом материале весьма противоречивы. Поскольку электронные переходы в возникающих при легировании центрах окраски определяются зарядовым состоянием никеля и микроструктурой скопической ЭТИХ центров. настоящей работе нами был использован метод XAFS-спектроскопии для определения зарядового состояния примеси Ni в $Ba_{1-x}Sr_xTiO_3$. Полученные данные были использованы для построения адекватной модели для расчетов из первых принципов, которые в дальнейшем будут использоваться для объяснения наблюдаемых оптических свойств легированного никелем $Ba_{1-x}Sr_{x}TiO_{3}$ и оптимизации условий получения материала, пригодного для использованы в эффективных преобразователях солнечной энергии.

ОБРАЗЦЫ, ЭКСПЕРИМЕНТАЛЬНЫЕ И РАСЧЕТНЫЕ МЕТОДЫ

Образцы SrTiO₃, Ba_{0.8}Sr_{0.2}TiO₃ и BaTiO₃, легированные 0.5-3% Ni, были получены методом твердофазных реакций при 1500°С. Исходными компонентами служили BaCO₃, SrCO₃, нанокристаллический TiO₂, полученный путем гидролиза тетрапропилортотитаната и высушенный при 500°С, и Ni(CH₃COO)₂ · 4H₂O. Компоненты взвешивались в необходимых пропорциях, перетирались в ацетоне и отжигались на воздухе при 1100° C в корундовых тиглях в течение 4—8 ч. Полученные порошки снова перетирались и отжигались на воздухе при 1500°C в течение 2 ч. Для того чтобы ввести примесь в узел B, состав образцов намеренно отклонялся от стехиометрии в сторону избытка Ва. Фазовый состав образцов контролировался с помощью рентгеновской дифракции. Образцы были однофазными и имели кубическую или гексагональную структуру перовскита при 300 К. Синтез эталонных соединений NiTiO₃ и BaNiO_{3—8} описан в [13].

Измерения спектров рентгеновского поглощения в областях протяженной тонкой структуры (EXAFS) и околокраевой структуры (XANES) проводились на станции KMC-2 источника синхротронного излучения BESSY на K-крае Ni (8.34 кэВ) в режиме флуоресценции при 300 К. Падающее излучение монохроматизировалось с помощью двухкристалльного монохроматора $Si_{1-x}Ge_x(111)$. Интенсивность падающего на образец излучения измерялась с помощью ионизационной камеры, интенсивность возбужденной рентгеновской флуоресценции измерялась с помощью энергодисперсионного кремниевого детектора RÖNTEC X-flash с рабочей площадью 10 мм^2 .

Спектры EXAFS обрабатывались с помощью широко используемого программного пакета IFEFFIT [24]. Функция EXAFS выделялась из экспериментальных спектров с помощью программы ATHENA, а ее подгонка к теоретической кривой, рассчитанной для заданной структурной модели, проводилась с помощью программы ARTEMIS. Амплитуда и фазовые сдвиги для всех путей однократного и многократного рассеяния рассчитывались с помощью программы FEFF6.

Моделирование геометрии и электронной структуры легированных никелем BaTiO₃ и SrTiO₃ проводилось из первых принципов в рамках метода функционала плотности с помощью программы ABINIT. Расчеты были выполнены на 40-атомной (простой кубической) и 80-атомной (ГЦК) сверхъячейках, в которых один из атомов Ті замещался атомом Ni (концентрация Ni составляла соответственно 12.5 и 6.25%). Симметрия сверхъячеек была кубической как для SrTiO₃, так и для BaTiO₃. Так как никель имеет частично

заполненную d-оболочку, в расчетах использовались PAW-псевдопотенциалы [25] и приближение LDA + U[26]. Параметры Uи J, описывающие кулоновское и обменное взаимодействие внутри d-оболочки и равные U = 5 эВ, J = 0.9 эВ, были взяты из литературы как типичные значения этих параметров для Ni; как было показано нами, изменение этих параметров в пределах 20% не оказывает заметного влияния на результаты. Энергия отсечки составляла 816 эВ, интегрирование по зоне Бриллюэна проводилось на сетке Монхорста—Пака размером 4 × 4 × 4 для простой кубической сверхъячейки или сетке с эквивалентной плотностью точек для ГЦК-сверхъячейки. Релаксация параметров кристаллической решетки и положений атомов в сверхъячейках останавливалась, когда силы Гельмана-Фейнмана становились менее 0.5 мэВ/Å.

Моделирование на 40-атомных и 80-атомных сверхъячейках без вакансий кислорода дают результаты для зарядового состояния примеси Ni⁴⁺. Для того чтобы изменить зарядовое состояние до Ni^{2+} , нами использован прием [27], в котором в систему добавлялось два дополнительных электрона, чтобы изменить заполнение d-оболочки. Хотя система в этом случае не являлась электрически нейтральной, проверка показала, что добавление двух электронов в 80-атомную сверхъячейку титаната стронция вызывает небольшое увеличение ширины запрещенной зоны (0.12 эВ) и параметра решетки (0.8%), однако получаемые при этом плотность состояний и межатомные расстояния Ni-O в легированных образцах близки к рассчитанным для модели, в которой зарядовое состояние Ni²⁺ получалось путем добавления удаленной вакансии кислорода, расположенной на расстоянии 5.8 Å от атома Ni.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Чтобы определить зарядовое состояние Ni, положение края поглощения в спектрах XANES образцов сравнивалось с положением этих краев в эталонных соединениях. Спектры XANES образцов SrTiO₃, Ba_{0.8}Sr_{0.2}TiO₃ и BaTiO₃ с примесью никеля и двух эталонных соединений (BaNiO $_{3-\delta}$ и NiTiO₃) показаны на рис. 1. Видно, что в образце ВаТіО₃(0.5% Nі) край поглощения наиболее близок к краю поглощения в эталонном соединении NiTiO₃, в котором зарядовое состояние никеля равно 2+. В образцах гексагонального ВаТіО₃(3% Ni) и кубического Ba_{0.8}Sr_{0.2}TiO₃(3% Ni) положения краев поглощения практически равны и сдвинуты на 0.7 эВ по отношению к краю поглощения NiTiO₃ в сторону края поглощения в эталонном соединении $BaNiO_{3-\delta}$, в котором зарядовое состояние никеля равно 3.4+ (зарядовое состояние никеля в этом образце было определено в работе [13]).

Рис 1. Спектры XANES четырех образцов системы $BaTiO_3-SrTiO_3$ и двух эталонных соединений. $I-NiTiO_3$, $2-BaTiO_3(0.5\%\ Ni)$, $3-BaTiO_3(3\%\ Ni)$, $4-Ba_{0.8}Sr_{0.2}TiO_3(3\%\ Ni)$, $5-BaNiO_{3-\delta}$, $6-SrTiO_3(3\%\ Ni)$.

Край поглощения в легированном никелем образце $SrTiO_3$ на 2.8 эВ выше края в $NiTiO_3$. Если предположить, что зарядовое состояние Ni в $SrTiO_3$ равно 4+ (см. обсуждение в работе [13]), то можно сделать вывод, что среднее значение зарядового состояния Ni равно ~2.3 в $BaTiO_3(0.5\%\ Ni)$ и ~2.5 как в $BaTiO_3(3\%\ Ni)$, так и $Ba_{0.8}Sr_{0.2}TiO_3(3\%\ Ni)$. Это означает, что большая часть ионов никеля в последних образцах находится в зарядовом состоянии 2+ и только часть их находится в состояниях 3+ или 4+.

Для того чтобы найти структурное положение никеля в образцах, были дополнительно проанализированы спектры EXAFS. Наилучшее согласие между расчетными и экспериментальными спектрами для всех образцов было получено в модели, в которой примесные атомы Ni замещают ионы Ti⁴⁺. Мы считаем, что в случае, когда Ni находится в зарядовом состоянии 2+, электронейтральность образца обеспечивается удаленными кислородными вакансиями $V_{\rm O}$. Межатомные расстояния до первой координационной сферы в исследованных образцах приведены в таблице. Видно, что для различных зарядовых состояний Ni имеется значительное различие в расстояниях Ni-O в первой координационной сфере несмотря на то, что атомы Ni замещают атомы Ti и находятся в узловых положениях как в SrTiO₃, так и в ВаТіО₃. Полученные расстояния Ni-O близки к сумме ионных радиусов иона O^{2-} и иона Ni в соответствующем зарядовом состоянии, так что

Координационная сфера	Межатомные расстояния, Å		
	SrTiO ₃	$Ba_{0.8}Sr_{0.2}TiO_3$	BaTiO ₃ *
$R_{ m Ni-O(I)}$	1.914 ± 0.004	2.106 ± 0.008	2.069
$R_{ m Ni-O(II)}$	_	2.438 ± 0.021	_
$R_{ m Ni-Ba}$	3.342 ± 0.006	3.428 ± 0.005	_
$R_{\text{Ni-Ti}}$	3.877 ± 0.004	3.998 ± 0.005	_

Локальная структура исследованных образцов, легированных 3% Ni

данные XANES и EXAFS хорошо согласуются между собой.

РЕЗУЛЬТАТЫ РАСЧЕТОВ ИЗ ПЕРВЫХ ПРИНЦИПОВ И ОБСУЖДЕНИЕ

Удивительный факт, установленный в настоящей работе, — это различие в зарядовом состоянии Ni в двух родственных соединениях: около 2+ в $BaTiO_3$ и $Ba_{0.8}Sr_{0.2}TiO_3$ и 4+ в $SrTiO_3$. Этот эффект может быть результатом, во-первых, различия энергий образования вакансий кислорода V_O и, во-вторых, различия в относительном положением донорных уровней V_O и акцепторных уровней Ni в этих соединениях. Для того чтобы прояснить природу этого эффекта, мы рассчитали парциальную плотность состояний, а также энергии образования V_O в $BaTiO_3$ и $SrTiO_3$, легированных

Результаты расчетов паршиальной плотности состояний представлены на рис. 2. В случае четырехвалентного никеля основное состояние диамагнитно (S=0) как для $BaTiO_3(Ni)$, так и для SrTiO₃(Ni). Как следует из рис. 2, в запрещенной зоне $SrTiO_3$ (рис. 2∂) и $BaTiO_3$ (рис. 2δ) появляется примесная полоса. В обоих соединениях она немного смещена в сторону зоны проводимости, причем в SrTiO₃ она расположена на 0.15-0.2 эВ выше, чем в ВаТіО₃. Сравнение плотности состояний в легированных (рис. 26, 20) и нелегированных (рис. 2a, 2ϵ) образцах показывает, что легирование незначительно увеличивает ширину запрещенной зоны (на 82 мэВ в ВаТіО, и 91 мэВ в SrTiO₃ при добавлении 6.25% Ni), но заметно модифицирует дно валентной зоны, отщепляя от нее полосу гибридизованных состояний. Уровень Ферми в легированных образцах расположен в запрещенной зоне между примесной полосой и валентной зоной (стрелки на рисунке).

Ширина примесной полосы составляет ~ 0.11 эВ в SrTiO₃ и BaTiO₃, легированных 6.25% Ni, и увеличивается до 1.1—1.7 эВ при удвоении концентрации примеси (рис. 3). Полученные результаты

свидетельствуют о возможной некорректности выводов работы [10] об уменьшении ширины запрещенной зоны при легировании Ni, которые были сделаны на основе анализа свойств образцов с очень высокой концентрацией никеля (12.5—50%).

В случае двухвалентного никеля основное состояние парамагнитно (S = 1) как в BaTiO₃(Ni), так и в SrTiO₃(Ni). Из-за появления магнитного момента энергетические положения 3d-состояний Ni с противоположной ориентацией спина различаются: состояния "спин-вверх" опускаются ниже уровня Ферми, а состояния "спин-вниз" сдвигаются вверх и располагаются в зоне проводимости. В обоих соединениях примесная полоса смещается в сторону валентной зоны, а уровень Ферми располагается между полностью заполненными состояниями "спин-вверх" и краем зоной проводимости (рис. 2в и 2е). Энергетическое расщепление "спин-вверх" и "спин-вниз" состояний О 2р указывает на частичную магнитную поляризацию ионов кислорода, расположенных в непосредственной близости от парамагнитных центров Ni²⁺.

Энергии образования вакансий кислорода V_0 в легированных никелем образцах рассчитывались как разница между полной энергией структуры, содержащей ион Ni^{4+} , и суммой энергии структуры, содержащей комплекс $\mathrm{Ni}^{2+}{-}V_0$, и половиной энергии молекулы O_2 в триплетном состоянии. Они оказались равными 3.14 эВ для $\mathrm{SrTiO}_3(\mathrm{Ni})$ и 2.69 эВ для $\mathrm{BaTiO}_3(\mathrm{Ni})$.

Обсудим причины различия зарядовых состояний Ni в SrTiO₃ и BaTiO₃. Как показали предыдущие расчеты положения энергетических уровней вакансий кислорода [28, 29], эти уровни расположены вблизи дна зоны проводимости, т.е. выше акцепторных уровней Ni, поэтому заполнение уровней Ni⁴⁺ электронами, возникающими при ионизации кислородных вакансий, энергетически выгодно в обоих материалах. С другой стороны, наши расчеты показывают, что энергия образования вакансий кислорода в легированном никелем $BaTiO_3$ заметно ниже, чем в легированном

^{*} Гексагональная структура.

Рис. 2. Парциальная плотность состояний в нелегированных и легированных никелем образцах $BaTiO_3$ (a-e) и $SrTiO_3$ (e-e). a, e — нелегированные образцы, d0, d0 — никель в зарядовом состоянии Ni^{4+} , d1, e2 — никель в зарядовом состоянии Ni^{2+} 1. Штриховыми линиями показаны d3-состояния d4. Положение уровня d6 Ферми d7 отмечено стрелками.

никелем $SrTiO_3$. Это позволяет предположить, что наблюдаемое различие в поведении Ni обусловлено различием энергий образования V_O в этих материалах.

Предложенная модель позволяет также качественно объяснить влияние концентрации примеси на среднее зарядовое состояние Ni в легированных образцах. При низком уровне легирования примесная полоса Ni узкая, и ее заполнение электронами определяется относительным энергетическим положением уровней Ni и $V_{\rm O}$. При увеличении концентрации примеси полосы, образованные из уровней Ni и $V_{\rm O}$, становятся широкими. Из-за перекрытия этих полос заполнение примесной полосы Ni асимптотически приближа-

ется к состоянию, соответствующему зарядовому состоянию 3+, что согласуется с экспериментом.

Расчеты электронной структуры ряда соединений никеля показали, что межатомное расстояние Ni—O в бо́льшей степени определяется магнитным состоянием Ni, чем его зарядовым состоянием. В частности, оказалось, что комплекс $\mathrm{Ni}^{2+}-V_{\mathrm{O}}$ с соседней вакансией кислорода, рассмотренный в работе [10], диамагнитен и характеризуется набором расстояний Ni—O 4 × 1.870 + 1 × 2.144 Å, которые сильно отличаются от расстояний, полученных из анализа данных EXAFS, поэтому объяснить расстояние Ni—O, которое наблюдается в эксперименте, могут только парамагнитные комплексы Ni с удаленными вакансиями.

Рис. 3. Парциальная плотность состояний в SrTiO₃, легированном 6.25% Ni⁴⁺ (слева) и 12.5% Ni⁴⁺ (справа). Штриховыми линиями показаны 3d-состояния Ti, пунктирными линиями — 3d-состояния Ni, сплошными линиями — 2p-состояния O.

Чтобы проверить предложенную нами модель, в будущем было бы интересно изучить эволюцию зарядового состояния Ni при изменении состава x во всей системе $BaTiO_3$ — $SrTiO_3$.

То, что примесная полоса Ni расположена вблизи середины запрещенной зоны $SrTiO_3$ и Ва- TiO_3 , позволяет объяснить сильное поглощение, наблюдаемое во всех изученных образцах, электронными переходами между примесной полосой и одной из разрешенных зон.

ЗАКЛЮЧЕНИЕ

Исследования легированных никелем образцов Ba_{1 - r}Sr_rTiO₃ с помощью XAFS-спектроскопии установили, что зарядовое состояние Ni изменяется от 4 в SrTiO₃ до ~2.5 в ВаТiO₃ при изменении х. Это изменение сопровождается заметным изменением межатомных расстояний Ni-O в первой координационной сфере. Расчеты из первых принципов показали, что никель создает примесную полосу в запрещенной зоне BaTiO₃ и SrTiO₃, что объясняет появление интенсивного поглощения в легированных никелем образцах в видимой области спектра. Анализ электронной структуры легированных образцов и расчеты энергий образования в них вакансий кислорода показали, что различие в зарядовом состоянии Ni в SrTiO₃ и Ва-ТіО₃ можно объяснить различной энергией образования вакансий кислорода в этих соединениях.

Настоящая работа выполнена при поддержке Российского фонда фундаментальных исследований, грант № 13-02-00724. Авторы хотели бы поблагодарить сотрудников BESSY за поддержку наших экспериментов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Uchino K.* Ferroelectric Devices. Second Edition. (CRC Press, Taylor and Francis Group, 2009), 367 p. [ISBN 9781439803752].
- 2. *Pithan C., Hennings D., Waser R.* // Int. J. Appl. Ceram. Technol. 2005. V. 2. № 1. P. 1.
- 3. *Porter S.G.* // Ferroelectrics. 1981. V. 33. № 1. P. 193.
- 4. Tagantsev A.K., Sherman V.O., Astafiev K.F., Venkatesh J., Setter N. // J. Electroceram. 2003. V. 11. № 1–2. P. 5.
- 5. Scott J.F. // Annu. Rev. Mater. Sci. 1998. V. 28. P. 79.
- 6. *Glaister R.M.*, *Kay H.F.* // Proc. Phys. Soc. 1960. V. 76. № 5. P. 763.
- 7. *Müller K.A.*, *Burkard H.* // Phys. Rev. B. 1979. V. 19. № 7. P. 3593.
- 8. Lemanov V.V., Smirnova E.P., Syrnikov P.P., Tarakanov E.A. // Phys. Rev. B. 1996. V. 54. № 5. P. 3151.
- 9. *Blasse G., de Korte P.H.M., Mackor A.* // J. Inorg. Nucl. Chem. 1981. V. 43. № 7. P. 1499.
- 10. Gou G.Y., Bennett J.W., Takenaka H., Rappe A.M. // Phys. Rev. B. 2011. V. 83. № 20. P. 205115.
- Лебедев А.И., Случинская И.А., Ерко А., Козловский В.Ф. // Письма в ЖЭТФ. 2009. Т. 89. № 9. С. 545.
- 12. *Sluchinskaya I.A.*, *Lebedev A.I.*, *Erko A.* // J. Adv. Dielectrics. 2013. V. 3. № 4. P. 1350031.
- 13. *Случинская И.А., Лебедев А.И., Ерко А. //* Физика тв. тела. 2014. Т. 56. № 3. С. 442.
- 14. *Huang Y.C., Tuan W.H.* // Mater. Chem. Phys. 2007. V. 105. № 2–3. P. 320.
- 15. *Boujelben F., Bahri F., Boudaya C. et al.* // J. Alloys and Comp. 2009. V. 481. № 1–2. P. 559.
- 16. *Das S.K.*, *Mishra R.N.*, *Roul B.K.* // Solid State Commun. 2014. V. 191. P. 19.
- 17. *Böttcher R., Langhammer H.T., Müller T.* // J. Phys.: Condens. Matter. 2011. V. 23. № 11. P. 115903.
- 18. Duverger E., Jannot B., Maglione M., Jannin M. // Solid State Ionics. 1994. V. 73. № 1–2. P. 139.
- 19. *Huang Y.C.*, *Tuan W.H.* // J. Electroceram. 2007. V. 18. № 3. P. 183.
- 20. *Huang J.Q.*, *Du P.Y.*, *Weng W.J.*, *Han G.R.* // J. Electroceram. 2008. V. 21. № 1. P. 394.
- 21. *Kumar Y., Mohiddon Md A., Srivastava A., Yadav K.L.* // Ind. J. of Eng. Mater. Sci. 2009. V. 16. № 6. P. 390.
- 22. *Kool Th.W., Lenjer S., Schirmer O.F.* // J. Phys.: Condens. Matter. 2007. V. 19. № 49. P. 496214.
- 23. Lenjer S., Scharfschwerdt R., Kool Th.W., Schirmer O.F. // Solid State Commun. 2000. V. 116. № 3. P. 133.
- IFEFFIT home page, http://cars9.uchicago.edu/ifeffit/
- 25. Garrity K.F., Bennett J.W., Rabe K.M., Vanderbilt D. // Comput. Mater. Sci. 2014. V. 81. P. 446.
- 26. Anisimov V.I., Aryasetiawan F., Lichtenstein A.I. // J. Phys.: Condens. Matter. 1997. V. 9. № 4. P. 767.
- 27. Postnikov A.V., Poteryaev A.I., Borstel G. // Ferroelectrics. 1998. V. 206. № 1. P. 69.
- 28. *Evarestov R.A., Kotomin E.A., Zhukovskii Yu.F.* // Int. J. Quant. Chem. 2006. V. 106. № 10. P. 2173.
- 29. *Choi M., Oba F., Tanaka I.* // J. Appl. Phys. 2011. V. 98. № 17. P. 172901.